Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Chem Biodivers ; 20(3): e202200933, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-2279166

RESUMEN

Neuropilin-1 (NRP-1), a surface transmembrane glycoprotein, is one of the most important co-receptors of VEGF-A165 (vascular endothelial growth factor) responsible for pathological angiogenesis. In general, NRP-1 overexpression in cancer correlates with poor prognosis and more tumor aggressiveness. NRP-1 role in cancer has been mainly explained by mediating VEGF-A165-induced effects on tumor angiogenesis. NRP-1 was recently identified as a co-receptor and an independent gateway for SARS-CoV-2 through binding subunit S2 of Spike protein in the same way as VEGF-A165. Thus, NRP-1 is of particular value as a target for cancer therapy and other angiogenesis-dependent diseases as well as for SARS-CoV-2 antiviral intervention. Herein, The Super Natural II, the largest available database of natural products (∼0.33 M), pre-filtered with drug-likeness criteria (absorption, distribution, metabolism and excretion/toxicity), was screened against NRP-1. NRP-1/VEGF-A165 interaction is one of protein-protein interfaces (PPIs) known to be challenging when approached in-silico. Thus, a PPI-suited multi-step virtual screening protocol, incorporating a derived pharmacophore with molecular docking and followed by MD (molecular dynamics) simulation, was designed. Two stages of pharmacophorically constrained molecular docking (standard and extra precisions), a mixed Torsional/Low-mode conformational search and MM-GBSA ΔG binding affinities calculation, resulted in the selection of 100 hits. These 100 hits were subjected to 20 ns MD simulation, that was extended to 100 ns for top hits (20) and followed by post-dynamics analysis (atomic ligand-protein contacts, RMSD, RMSF, MM-GBSA ΔG, Rg, SASA and H-bonds). Post-MD analysis showed that 19 small drug-like nonpeptide natural molecules, grouped in four chemical scaffolds (purine, thiazole, tetrahydropyrimidine and dihydroxyphenyl), well verified the derived pharmacophore and formed stable and compact complexes with NRP-1. The discovered molecules are promising and can serve as a base for further development of new NRP-1 inhibitors.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , Simulación del Acoplamiento Molecular , Sitios de Unión , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neuropilina-1/metabolismo , Unión Proteica , Farmacóforo , Productos Biológicos/farmacología , SARS-CoV-2 , Simulación de Dinámica Molecular , Ligandos
2.
Molecules ; 28(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2281842

RESUMEN

The interaction of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain with the host-cell ACE2 receptor is a well-known step in virus infection. Neuropilin-1 (NRP-1) is another host factor involved in virus internalization. The interaction between S-glycoprotein and NRP-1 has been identified as a potential COVID-19 treatment target. Herein, the effectiveness of folic acid and leucovorin in preventing contact between S-glycoprotein and NRP-1 receptors was investigated using in silico studies and then confirmed in vitro. The results of a molecular docking study showed that leucovorin and folic acid had lower binding energies than EG01377, a well-known NRP-1 inhibitor, and lopinavir. Two hydrogen bonds with Asp 320 and Asn 300 residues stabilized the leucovorin, while interactions with Gly 318, Thr 349, and Tyr 353 residues stabilized the folic acid. The molecular dynamic simulation revealed that the folic acid and leucovorin created very stable complexes with the NRP-1. The in vitro studies showed that the leucovorin was the most active inhibitor of the S1-glycoprotein/NRP-1 complex formation, with an IC75 value of 185.95 µg/mL. The results of this study suggest that folic acid and leucovorin could be considered as potential inhibitors of the S-glycoprotein/NRP-1 complex and, thus, could prevent the SARS-CoV-2 virus' entry into host cells.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulación del Acoplamiento Molecular , Leucovorina , Neuropilina-1/metabolismo , Ácido Fólico/metabolismo , Internalización del Virus , Tratamiento Farmacológico de COVID-19 , Unión Proteica , Glicoproteínas/metabolismo
3.
Histopathology ; 82(6): 846-859, 2023 May.
Artículo en Inglés | MEDLINE | ID: covidwho-2213586

RESUMEN

AIMS: COVID-19 has had enormous consequences on global health-care and has resulted in millions of fatalities. The exact mechanism and site of SARS-CoV-2 entry into the body remains insufficiently understood. Recently, novel virus receptors were identified, and alveolar macrophages were suggested as a potential viral entry cell type and vector for intra-alveolar virus transmission. Here, we investigated the protein expression of 10 well-known and novel virus entry molecules along potential entry sites in humans using immunohistochemistry. METHODS AND RESULTS: Samples of different anatomical sites from up to 93 patients were incorporated into tissue microarrays. Protein expression of ACE2, TMPRSS2, furin, CD147, C-type lectin receptors (CD169, CD209, CD299), neuropilin-1, ASGR1 and KREMEN1 were analysed. In lung tissues, at least one of the three receptors ACE2, ASGR1 or KREMEN1 was expressed in the majority of cases. Moreover, all the investigated molecules were found to be expressed in alveolar macrophages, and co-localisation with SARS-CoV-2 N-protein was demonstrated using dual immunohistochemistry in lung tissue from a COVID-19 autopsy. While CD169 and CD209 showed consistent protein expression in sinonasal, conjunctival and bronchiolar tissues, neuropilin-1 and ASGR1 were mostly absent, suggesting a minor relevance of these two molecules at these specific sites. CONCLUSION: Our results extend recent discoveries indicating a role for these molecules in virus entry at different anatomical sites. Moreover, they support the notion of alveolar macrophages being a potential entry cell for SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Macrófagos Alveolares/metabolismo , Internalización del Virus , Enzima Convertidora de Angiotensina 2/metabolismo , Neuropilina-1/metabolismo , Receptor de Asialoglicoproteína/metabolismo
4.
Antiviral Res ; 209: 105481, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2176313

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells using angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP-1) as the primary receptor and entry co-factor, respectively. Cell entry is the first and major step in initiation of the viral life cycle, representing an ideal target for antiviral interventions. In this study, we used a recombinant replication-deficient vesicular stomatitis virus-based pseudovirus bearing the spike protein of SARS-CoV-2 (SARS2-S) to screen a US Food and Drug Administration-approved drug library and identify inhibitors of SARS-CoV-2 cell entry. The screen identified 24 compounds as primary hits, and the largest therapeutic target group formed by these primary hits was composed of seven dopamine receptor D2 (DRD2) antagonists. Cell-based and biochemical assays revealed that the DRD2 antagonists inhibited both fusion activity and the binding of SARS2-S to NRP-1, but not its binding to ACE2. On the basis of structural similarity to the seven identified DRD2 antagonists, which included six phenothiazines, we examined the anti-SARS-CoV-2 activity of an additional 15 phenothiazines and found that all the tested phenothiazines shared an ability to inhibit SARS2-S-mediated cell entry. One of the phenothiazines, alimemazine, which had the lowest 50% effective concentration of the tested phenothiazines, exhibited a clear inhibitory effect on SARS2-S-NRP-1 binding and SARS-CoV-2 multiplication in cultured cells but not in a mouse infection model. Our findings provide a basis for the development of novel anti-SARS-CoV-2 therapeutics that interfere with SARS2-S binding to NRP-1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Enzima Convertidora de Angiotensina 2/química , Neuropilina-1/metabolismo , Fenotiazinas/farmacología , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Humanos
6.
J Virol ; 96(20): e0131822, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2053123

RESUMEN

Pseudorabies virus (PRV), which is extremely infectious and can infect numerous mammals, has a risk of spillover into humans. Virus-host interactions determine viral entry and spreading. Here, we showed that neuropilin-1 (NRP1) significantly potentiates PRV infection. Mechanistically, NRP1 promoted PRV attachment and entry, and enhanced cell-to-cell fusion mediated by viral glycoprotein B (gB), gD, gH, and gL. Furthermore, through in vitro coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays, NRP1 was found to physically interact with gB, gD, and gH, and these interactions were C-end Rule (CendR) motif independent, in contrast to currently known viruses. Remarkably, we illustrated that the viral protein gB promotes NRP1 degradation via a lysosome-dependent pathway. We further demonstrate that gB promotes NRP1 degradation in a furin-cleavage-dependent manner. Interestingly, in this study, we generated gB furin cleavage site (FCS)-knockout PRV (Δfurin PRV) and evaluated its pathogenesis; in vivo, we found that Δfurin PRV virulence was significantly attenuated in mice. Together, our findings demonstrated that NRP1 is an important host factor for PRV and that NRP1 may be a potential target for antiviral intervention. IMPORTANCE Recent studies have shown accelerated PRV cross-species spillover and that PRV poses a potential threat to humans. PRV infection in humans always manifests as a high fever, tonic-clonic seizures, and encephalitis. Therefore, understanding the interaction between PRV and host factors may contribute to the development of new antiviral strategies against PRV. NRP1 has been demonstrated to be a receptor for several viruses that harbor CendR, including SARS-CoV-2. However, the relationships between NRP1 and PRV are poorly understood. Here, we found that NRP1 significantly potentiated PRV infection by promoting PRV attachment and enhanced cell-to-cell fusion. For the first time, we demonstrated that gB promotes NRP1 degradation via a lysosome-dependent pathway. Last, in vivo, Δfurin PRV virulence was significantly attenuated in mice. Therefore, NRP1 is an important host factor for PRV, and NRP1 may be a potential target for antiviral drug development.


Asunto(s)
COVID-19 , Herpesvirus Suido 1 , Seudorrabia , Ratones , Humanos , Animales , Herpesvirus Suido 1/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Furina/metabolismo , SARS-CoV-2 , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral , Proteínas Virales/metabolismo , Antivirales/metabolismo , Mamíferos
7.
Microb Pathog ; 170: 105701, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1977657

RESUMEN

Neuropilin-1 (NRP1) is a widely expressed cell surface receptor protein characterized by its pleiotropic function. Recent reports highlighted NRP1 as an additional entry point of the SARS-CoV-2 virus, enhancing viral infectivity by interacting with the S-protein of SARS-CoV-2. The ubiquitous distribution and mechanism of action of NRP1 enable the SARS-CoV-2 virus to attack multiple organs in the body simultaneously. Therefore, blocking NRP1 is a potential therapeutic approach against SARS-CoV-2 infection. The current study screened the South African natural compounds database (SANCDB) for molecules that can disrupt the SARS-CoV-2 S protein-NRP1 interaction as a potential antiviral target for SARS-CoV-2 cellular entry. Following excessive screening and validation analysis 3-O-Methylquercetin and Esculetin were identified as potential compounds to disrupt the S-protein-NRP1 interaction. Furthermore, to understand the conformational stability and dynamic features between NRP1 interaction with the selected natural products, we performed 200 ns molecular dynamics (MD) simulations. In addition, molecular mechanics-generalized Born surface area (MM/GBSA) was utilized to calculate the free binding energies of the natural products interacting with NRP1. 3-O-methylquercetin showed an inhibitory effect with binding energies ΔG of -25.52 ±â€¯0.04 kcal/mol to NRP1, indicating the possible disruption of the NRP1-S-protein interaction. Our analysis demonstrated that 3-O-methylquercetin presents a potential antiviral compound against SARS-CoV-2 infectivity. These results set the path for future functional in-vitro and in-vivo studies in SARS-CoV-2 research.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Neuropilina-1/metabolismo , Antivirales/química , Antivirales/farmacología , Productos Biológicos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neuropilina-1/química , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
8.
Proc Natl Acad Sci U S A ; 119(25): e2201980119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1890414

RESUMEN

Endosomal sorting maintains cellular homeostasis by recycling transmembrane proteins and associated proteins and lipids (termed "cargoes") from the endosomal network to multiple subcellular destinations, including retrograde traffic to the trans-Golgi network (TGN). Viral and bacterial pathogens subvert retrograde trafficking machinery to facilitate infectivity. Here, we develop a proteomic screen to identify retrograde cargo proteins of the endosomal SNX-BAR sorting complex promoting exit 1 (ESCPE-1). Using this methodology, we identify Neuropilin-1 (NRP1), a recently characterized host factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as a cargo directly bound and trafficked by ESCPE-1. ESCPE-1 mediates retrograde trafficking of engineered nanoparticles functionalized with the NRP1-interacting peptide of the SARS-CoV-2 spike (S) protein. CRISPR-Cas9 deletion of ESCPE-1 subunits reduces SARS-CoV-2 infection levels in cell culture. ESCPE-1 sorting of NRP1 may therefore play a role in the intracellular membrane trafficking of NRP1-interacting viruses such as SARS-CoV-2.


Asunto(s)
COVID-19 , Endosomas , Interacciones Huésped-Patógeno , Neuropilina-1 , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/virología , Sistemas CRISPR-Cas , Endosomas/virología , Eliminación de Gen , Humanos , Nanopartículas , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proteómica , SARS-CoV-2/metabolismo , Nexinas de Clasificación/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
9.
Cell Mol Biol Lett ; 27(1): 10, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1753103

RESUMEN

The novel coronavirus disease 2019 (COVID-19) pandemic has spread worldwide, and finding a safe therapeutic strategy and effective vaccine is critical to overcoming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, elucidation of pathogenesis mechanisms, especially entry routes of SARS-CoV-2 may help propose antiviral drugs and novel vaccines. Several receptors have been demonstrated for the interaction of spike (S) protein of SARS-CoV-2 with host cells, including angiotensin-converting enzyme (ACE2), ephrin ligands and Eph receptors, neuropilin 1 (NRP-1), P2X7, and CD147. The expression of these entry receptors in the central nervous system (CNS) may make the CNS prone to SARS-CoV-2 invasion, leading to neurodegenerative diseases. The present review provides potential pathological mechanisms of SARS-CoV-2 infection in the CNS, including entry receptors and cytokines involved in neuroinflammatory conditions. Moreover, it explains several neurodegenerative disorders associated with COVID-19. Finally, we suggest inflammasome and JaK inhibitors as potential therapeutic strategies for neurodegenerative diseases.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Sistema Nervioso Central/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Receptores Virales/genética , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/uso terapéutico , Basigina/genética , Basigina/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/virología , Efrinas/genética , Efrinas/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Factores Inmunológicos/uso terapéutico , Inflamasomas/genética , Inflamasomas/metabolismo , Inhibidores de las Cinasas Janus/uso terapéutico , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/genética , Quinasas Janus/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/virología , Neuropilina-1/genética , Neuropilina-1/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Virales/antagonistas & inhibidores , Receptores Virales/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Transducción de Señal
10.
Epigenomics ; 14(3): 153-162, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1622527

RESUMEN

Smoking could predispose individuals to a more severe COVID-19 by upregulating a particular gene known as mdig, which is mediated through a number of well-known histone modifications. Smoking might regulate the transcription-activating H3K4me3 mark, along with the transcription-repressing H3K9me3 and H3K27me3 marks, in a way to favor SARS-CoV-2 entry by enhancing the expression of ACE2, NRP1 and NRP2, AT1R, CTSD and CTSL, PGE2 receptors 2-4, SLC6A20 and IL-6, all of which interact either directly or indirectly with important receptors, facilitating viral entry in COVID-19.


Lay abstract The role of smoking in development of several respiratory diseases has been clearly established. A significant proportion of these deleterious effects is mediated through epigenetic mechanisms, particularly histone modifications. Recent evidence indicates that smoking induces the expression of a mediator known as mdig, which in turn alters the transcription of several key proteins that have been implicated in development of COVID-19.


Asunto(s)
COVID-19/genética , Dioxigenasas/genética , Epigénesis Genética , Histona Demetilasas/genética , Histonas/genética , Proteínas Nucleares/genética , Procesamiento Proteico-Postraduccional , Fumar/genética , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/diagnóstico , COVID-19/metabolismo , COVID-19/virología , Catepsina D/genética , Catepsina D/metabolismo , Catepsina L/genética , Catepsina L/metabolismo , Dioxigenasas/metabolismo , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Metilación , Neuropilina-1/genética , Neuropilina-1/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E/metabolismo , Factores de Riesgo , SARS-CoV-2/genética , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/metabolismo , Fumar/metabolismo , Fumar/patología , Internalización del Virus
11.
Int J Mol Med ; 49(2)2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1594678

RESUMEN

The pathophysiology of coronavirus disease 2019 (COVID­19) is mainly dependent on the underlying mechanisms that mediate the entry of severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) into the host cells of the various human tissues/organs. Recent studies have indicated a higher order of complexity of the mechanisms of infectivity, given that there is a wide­repertoire of possible cell entry mediators that appear to co­localise in a cell­ and tissue­specific manner. The present study provides an overview of the 'canonical' SARS­CoV­2 mediators, namely angiotensin converting enzyme 2, transmembrane protease serine 2 and 4, and neuropilin­1, expanding on the involvement of novel candidates, including glucose­regulated protein 78, basigin, kidney injury molecule­1, metabotropic glutamate receptor subtype 2, ADAM metallopeptidase domain 17 (also termed tumour necrosis factor­α convertase) and Toll­like receptor 4. Furthermore, emerging data indicate that changes in microRNA (miRNA/miR) expression levels in patients with COVID­19 are suggestive of further complexity in the regulation of these viral mediators. An in silico analysis revealed 160 candidate miRNAs with potential strong binding capacity in the aforementioned genes. Future studies should concentrate on elucidating the association between the cellular tropism of the SARS­CoV­2 cell entry mediators and the mechanisms through which they might affect the clinical outcome. Finally, the clinical utility as a biomarker or therapeutic target of miRNAs in the context of COVID­19 warrants further investigation.


Asunto(s)
COVID-19/metabolismo , MicroARNs/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , Internalización del Virus , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/virología , Chaperón BiP del Retículo Endoplásmico/genética , Chaperón BiP del Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/genética , Neuropilina-1/genética , Neuropilina-1/metabolismo , Receptores Virales/genética , SARS-CoV-2/fisiología , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Tropismo Viral
12.
Mol Med ; 27(1): 162, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1582120

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel type b coronavirus responsible for the COVID-19 pandemic. With over 224 million confirmed infections with this virus and more than 4.6 million people dead because of it, it is critically important to define the immunological processes occurring in the human response to this virus and pathogenetic mechanisms of its deadly manifestation. This perspective focuses on the contribution of the recently discovered interaction of SARS-CoV-2 Spike protein with neuropilin 1 (NRP1) receptor, NRP1 as a virus entry receptor for SARS-CoV-2, its role in different physiologic and pathologic conditions, and the potential to target the Spike-NRP1 interaction to combat virus infectivity and severe disease manifestations.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Neuropilina-1/química , Neuropilina-1/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/epidemiología , COVID-19/etiología , Comorbilidad , Diabetes Mellitus/epidemiología , Diabetes Mellitus/virología , Femenino , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Lactante , Terapia Molecular Dirigida/métodos , Neuropilina-1/inmunología , Embarazo , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Complicaciones Infecciosas del Embarazo/virología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo
13.
J Med Virol ; 93(12): 6671-6685, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1544318

RESUMEN

Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a wide spectrum of syndromes involving multiple organ systems and is primarily mediated by viral spike (S) glycoprotein through the receptor-binding domain (RBD) and numerous cellular proteins including ACE2, transmembrane serine protease 2 (TMPRSS2), kidney injury molecule-1 (Kim-1), and neuropilin-1 (NRP-1). In this study, we examined the entry tropism of SARS-CoV-2 and SARS-CoV using S protein-based pseudoviruses to infect 22 cell lines and 3 types of primary cells isolated from respiratory, urinary, digestive, reproductive, and immune systems. At least one cell line or type of primary cell from each organ system was infected by both pseudoviruses. Infection by pseudoviruses is effectively blocked by S1, RBD, and ACE2 recombinant proteins, and more weakly by Kim-1 and NRP-1 recombinant proteins. Furthermore, cells with robust SARS-CoV-2 pseudovirus infection had strong expression of either ACE2 or Kim-1 and NRP-1 proteins. ACE2 glycosylation appeared to be critical for the infections of both viruses as there was a positive correlation between infectivity of either SARS-CoV-2 or SARS-CoV pseudovirus with the level of glycosylated ACE2 (gly-ACE2). These results reveal that SARS-CoV-2 cell entry could be mediated by either an ACE2-dependent or -independent mechanism, thus providing a likely molecular basis for its broad tropism for a wide variety of cell types.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Tracto Gastrointestinal/virología , Genitales/virología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Sistema Inmunológico/virología , Neuropilina-1/metabolismo , Sistema Respiratorio/virología , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Internalización del Virus , Western Blotting , COVID-19/metabolismo , COVID-19/virología , Línea Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Tracto Gastrointestinal/citología , Genitales/citología , Humanos , Sistema Inmunológico/citología , Sistema Respiratorio/citología
14.
Front Immunol ; 12: 740260, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1506482

RESUMEN

Increased left ventricular fibrosis has been reported in patients hospitalized with coronavirus disease 2019 (COVID-19). It is unclear whether this fibrosis is a consequence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection or a risk factor for severe disease progression. We observed increased fibrosis in the left ventricular myocardium of deceased COVID-19 patients, compared with matched controls. We also detected increased mRNA levels of soluble interleukin-1 receptor-like 1 (sIL1-RL1) and transforming growth factor ß1 (TGF-ß1) in the left ventricular myocardium of deceased COVID-19 patients. Biochemical analysis of blood sampled from patients admitted to the emergency department (ED) with COVID-19 revealed highly elevated levels of TGF-ß1 mRNA in these patients compared to controls. Left ventricular strain measured by echocardiography as a marker of pre-existing cardiac fibrosis correlated strongly with blood TGF-ß1 mRNA levels and predicted disease severity in COVID-19 patients. In the left ventricular myocardium and lungs of COVID-19 patients, we found increased neuropilin-1 (NRP-1) RNA levels, which correlated strongly with the prevalence of pulmonary SARS-CoV-2 nucleocapsid. Cardiac and pulmonary fibrosis may therefore predispose these patients to increased cellular viral entry in the lung, which may explain the worse clinical outcome observed in our cohort. Our study demonstrates that patients at risk of clinical deterioration can be identified early by echocardiographic strain analysis and quantification of blood TGF-ß1 mRNA performed at the time of first medical contact.


Asunto(s)
COVID-19/fisiopatología , Ventrículos Cardíacos/patología , Miocardio/patología , Fibrosis Pulmonar/fisiopatología , SARS-CoV-2/fisiología , Adulto , Anciano , COVID-19/inmunología , Femenino , Fibrosis , Ventrículos Cardíacos/metabolismo , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Masculino , Persona de Mediana Edad , Miocardio/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Fibrosis Pulmonar/inmunología , Riesgo , Índice de Severidad de la Enfermedad , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Carga Viral
15.
Viruses ; 13(11)2021 10 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1488764

RESUMEN

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is primarily responsible for coronavirus disease (COVID-19) and it is characterized by respiratory illness with fever and dyspnea. Severe vascular problems and several other manifestations, including neurological ones, have also been frequently reported, particularly in the great majority of "long hauler" patients. SARS-CoV-2 infects and replicates in lung epithelial cells, while dysfunction of endothelial and neuronal brain cells has been observed in the absence of productive infection. It has been shown that the Spike protein can interact with specific cellular receptors, supporting both viral entry and cellular dysfunction. It is thus clear that understanding how and when these receptors are regulated, as well as how much they are expressed would help in unveiling the multifaceted aspects of this disease. Here, we show that SH-SY5Y neuroblastoma cells express three important cellular surface molecules that interact with the Spike protein, namely ACE2, TMPRSS2, and NRP1. Their levels increase when cells are treated with retinoic acid (RA), a commonly used agent known to promote differentiation. This increase matched the higher levels of receptors observed on HUVEC (primary human umbilical vein endothelial cells). We also show by confocal imaging that replication-defective pseudoviruses carrying the SARS-CoV-2 Spike protein can infect differentiated and undifferentiated SH-SY5Y, and HUVEC cells, although with different efficiencies. Neuronal cells and endothelial cells are potential targets for SARS-CoV-2 infection and the interaction of the Spike viral protein with these cells may cause their dysregulation. Characterizing RNA and protein expression tempo, mode, and levels of different SARS-CoV-2 receptors on both cell subpopulations may have clinical relevance for the diagnosis and treatment of COVID-19-infected subjects, including long hauler patients with neurological manifestations.


Asunto(s)
COVID-19/metabolismo , Células Endoteliales/metabolismo , Neuroblastoma/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Línea Celular Tumoral , Células Endoteliales/virología , Interacciones Microbiota-Huesped , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neuroblastoma/virología , Neuropilina-1/metabolismo , Serina Endopeptidasas/metabolismo , Internalización del Virus
16.
Biomolecules ; 11(11)2021 10 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1480577

RESUMEN

SARS-CoV-2 contains certain molecules that are related to the presence of immunothrombosis. Here, we review the pathogen and damage-associated molecular patterns. We also study the imbalance of different molecules participating in immunothrombosis, such as tissue factor, factors of the contact system, histones, and the role of cells, such as endothelial cells, platelets, and neutrophil extracellular traps. Regarding the pathogenetic mechanism, we discuss clinical trials, case-control studies, comparative and translational studies, and observational studies of regulatory or inhibitory molecules, more specifically, extracellular DNA and RNA, histones, sensors for RNA and DNA, as well as heparin and heparinoids. Overall, it appears that a network of cells and molecules identified in this axis is simultaneously but differentially affecting patients at different stages of COVID-19, and this is characterized by endothelial damage, microthrombosis, and inflammation.


Asunto(s)
Alarminas , COVID-19/virología , SARS-CoV-2 , Tromboinflamación/virología , Trombosis/virología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Coagulación Sanguínea , Plaquetas/virología , COVID-19/complicaciones , ADN/metabolismo , Trampas Extracelulares , Heparina/metabolismo , Histonas/metabolismo , Humanos , Ratones , Neuropilina-1/metabolismo , ARN/metabolismo , Transducción de Señal , Trombina/metabolismo , Tromboplastina/metabolismo , Trombosis/complicaciones
17.
Physiol Rep ; 9(17): e15014, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1410554

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening people's lives and impacting their health. It is still unclear whether people engaged in physical activity are at an increased risk of SARS-CoV-2 infection and severe forms of COVID-19. In order to provide data to help answer this question, we, therefore, investigated the effects of endurance training on the levels of host proteins involved in SARS-CoV-2 infection in mice. Eight-week-old C57BL/6J mice were subjected to treadmill running (17-25 m/min, 60-90 min, 5 sessions/week, 8 weeks). After the intervention, the levels of angiotensin-converting enzyme 2 (ACE2; host receptor for SARS-CoV-2), transmembrane protease serine 2 (TMPRSS2; host protease priming fusion of SARS-CoV-2 to host cell membranes), FURIN (host protease that promotes binding of SARS-CoV-2 to host receptors), and Neuropilin-1 (host coreceptor for SARS-CoV-2) were measured in 10 organs that SARS-CoV-2 can infect (larynx, trachea, lung, heart, jejunum, ileum, colon, liver, kidney, and testis). Six organs (heart, lung, jejunum, liver, trachea, and ileum) showed changes in the levels of at least one of the proteins. Endurance training increased ACE2 levels in heart (+66.4%), lung (+37.1%), jejunum (+24.7%) and liver (+27.4%), and FURIN in liver (+17.9%) tissue. In contrast, endurance training decreased Neuropilin-1 levels in liver (-39.7%), trachea (-41.2%), and ileum (-39.7%), and TMPRSS2 in lung (-11.3%). Taken together, endurance training altered the levels of host proteins involved in SARS-CoV-2 cell entry in an organ-dependent manner.


Asunto(s)
COVID-19/virología , Condicionamiento Físico Animal , Resistencia Física , Receptores Virales/metabolismo , SARS-CoV-2/patogenicidad , Internalización del Virus , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/enzimología , Furina/metabolismo , Interacciones Huésped-Patógeno , Masculino , Ratones Endogámicos C57BL , Neuropilina-1/metabolismo , Carrera , Serina Endopeptidasas/metabolismo
18.
Mol Syst Biol ; 17(9): e10079, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1406892

RESUMEN

We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Interacciones Huésped-Patógeno/genética , Procesamiento Proteico-Postraduccional , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Sitios de Unión , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Biología Computacional/métodos , Proteínas de la Envoltura de Coronavirus/química , Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Imitación Molecular , Neuropilina-1/química , Neuropilina-1/genética , Neuropilina-1/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Multimerización de Proteína , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Proteínas Viroporinas/química , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo , Replicación Viral
19.
PLoS Pathog ; 17(9): e1009878, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1394563

RESUMEN

SARS-CoV-2 fine-tunes the interferon (IFN)-induced antiviral responses, which play a key role in preventing coronavirus disease 2019 (COVID-19) progression. Indeed, critically ill patients show an impaired type I IFN response accompanied by elevated inflammatory cytokine and chemokine levels, responsible for cell and tissue damage and associated multi-organ failure. Here, the early interaction between SARS-CoV-2 and immune cells was investigated by interrogating an in vitro human peripheral blood mononuclear cell (PBMC)-based experimental model. We found that, even in absence of a productive viral replication, the virus mediates a vigorous TLR7/8-dependent production of both type I and III IFNs and inflammatory cytokines and chemokines, known to contribute to the cytokine storm observed in COVID-19. Interestingly, we observed how virus-induced type I IFN secreted by PBMC enhances anti-viral response in infected lung epithelial cells, thus, inhibiting viral replication. This type I IFN was released by plasmacytoid dendritic cells (pDC) via an ACE-2-indipendent but Neuropilin-1-dependent mechanism. Viral sensing regulates pDC phenotype by inducing cell surface expression of PD-L1 marker, a feature of type I IFN producing cells. Coherently to what observed in vitro, asymptomatic SARS-CoV-2 infected subjects displayed a similar pDC phenotype associated to a very high serum type I IFN level and induction of anti-viral IFN-stimulated genes in PBMC. Conversely, hospitalized patients with severe COVID-19 display very low frequency of circulating pDC with an inflammatory phenotype and high levels of chemokines and pro-inflammatory cytokines in serum. This study further shed light on the early events resulting from the interaction between SARS-CoV-2 and immune cells occurring in vitro and confirmed ex vivo. These observations can improve our understanding on the contribution of pDC/type I IFN axis in the regulation of the anti-viral state in asymptomatic and severe COVID-19 patients.


Asunto(s)
COVID-19/inmunología , Células Dendríticas/clasificación , Interferón Tipo I/metabolismo , SARS-CoV-2/inmunología , Adulto , Anciano de 80 o más Años , Infecciones Asintomáticas , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/virología , Células Epiteliales/citología , Femenino , Hospitalización , Humanos , Interferón Tipo I/inmunología , Pulmón/citología , Masculino , Persona de Mediana Edad , Neuropilina-1/metabolismo , Fenotipo , Índice de Severidad de la Enfermedad , Receptor Toll-Like 7/metabolismo
20.
Cell Metab ; 33(8): 1565-1576.e5, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1343160

RESUMEN

Emerging evidence points toward an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While preexisting diabetes is associated with severe COVID-19, it is unclear whether COVID-19 severity is a cause or consequence of diabetes. To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic ß cells can be infected by SARS-CoV-2 and cause ß cell depletion. We found that the SARS-CoV-2 receptor, ACE2, and related entry factors (TMPRSS2, NRP1, and TRFC) are expressed in ß cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic ß cells in patients who succumbed to COVID-19 and selectively infects human islet ß cells in vitro. We demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces ß cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic ß cell signaling, similar to that observed in type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce ß cell killing.


Asunto(s)
COVID-19/virología , Diabetes Mellitus/virología , Células Secretoras de Insulina/virología , Neuropilina-1/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2/patogenicidad , Internalización del Virus , Células A549 , Adulto , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2/metabolismo , Antígenos CD/metabolismo , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , COVID-19/complicaciones , COVID-19/diagnóstico , Estudios de Casos y Controles , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Femenino , Interacciones Huésped-Patógeno , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Persona de Mediana Edad , Receptores de Transferrina/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA